

	EXERCISE 2.2
0.1	Find the zeroes of the following quadratic polynomials and veryfy the relationship between the zeroes and the coefficients:
	(i) $x^2 - 2x - 8$ (ii) $4x^2 - 4x + 1$ (iii) $6x^2 - 3 - 7x$ (iv) $4x^2 + 8x$ (v) $4x^2 - 4x - 4$
Ars U)	$\chi^{2} - 2\chi - 8$ = $\chi^{2} - 4\chi + 2\chi - 8$ = $\chi(\chi - 4) + 2(\chi - 4)$ = $(\chi - 4)(\chi + 2)$ The value of $\chi^{2} - 2\chi - 8$ is zero 9f $(\chi - 4) = 0$ or $(\chi + 2) = 0$ $\chi = 4$ or $\chi = -2$
	Therefore, zeroes of x^2-2x-8 are -2 and $4.4n$ Sum of zeroes = $-2.44=2$ = $-(-2)$ = $-(coefficient of x)$ Coefficient of x^2 Product of zeroes = $(-2)xy = -8$ - -8 = Constant term Coefficient of x^2
	Hence relationship between the zeroes and the coefficient are verified.

(ii)	452-45+1
	$=45^2-25-25+1$
	= 25(25-1)-1(25-1)
	= (7.5-1)(25-1)
	The value of 452-45+1 is zero
	(2S-1)=0 or $(2S-1)=0$
	$S = \frac{1}{2} \text{or} S = \frac{1}{2}$
	Therefore, zeroes of 452-45+1 are 1 and 1 Ans.
	Now, sum of zeroes = 1 +1 = 1
	-(-4) (coefficient of s):
	4 (coefficient of S2)
	Product of zeroes = $\frac{1}{2} \times \frac{1}{2} = \frac{1}{4}$
	= constant term
	Coefficient of s2.
	Hence, relation between the zeroes and the
	coefficients are verified.

(نان)	6x2-3-7x
(III)	$= 6x^2 - 7x - 3$
	$= 6x^2 - 9x + 2x - 3$
	$= 3 \times (3 \times -3) + 1(2 \times -3)$
	= $(2x-3)(3x+1)$
	The value of $6x^2 - 3 - 7x$ is zero $(2x-3) = 0$ or $(3x+1) = 0$
	$x = \frac{3}{2} \text{ov} x = -\frac{1}{3}$
	Therefore zeroes of 6x2-3-7x are 3 and -13
	Sum of zeroes = $\frac{3}{2} + \left(-\frac{1}{3}\right)$
	= 9-2 - 7
	= -(-7) = -(coefficient of x)
	6 Coefficient of x2
	Product of zeroes = $\left(\frac{3}{2}\right)\left(-\frac{1}{3}\right)$
	_ 3 _ Constant term
	6 Coefficient of 2x2
	Hence, relationship between the zeroes and the coefficient one verified.

(iv)	442 +84 = 44 (442)
~ /	The value of 442+84 is zero
	THE VOIGE OF THE TOP TO
	4u (u+2) = 0
	4u=0 ex u+2 =0, u=0 ox u=-2
	Therefore sum of zeroes = $0 + (-2)$ Ans. = $-2 - 8 - (coefficient of u)$ 4 (coefficient of u^2
	4 Coefficient of 42
	Product of zeroes = $(0)(-2)=0$
	= 0 - Constant term 4 Coefficient of x2
	4 Coefficient of x2
	Hence, relationship between the zeroes and the coefficient are verified.
	,,
(v)	
	$t^2-15 = t^2-(\sqrt{15})^2 = (t+\sqrt{15})(t-\sqrt{15})$
	The value of t2-15 is zero
	t+1/15 = 0 or t-1/15=0, t=1/15 or t=-1/15
	Therefore, zeroes of t2-15 are -JT5 and JT5
	Now sum of zeroes = - VTS + VTS
	= 0 = 0 (coefficient of t)
	= 0 = 0 = -(coefficient of t) $= 0 = 0 = -(coefficient of t)$
3	Product of zeroes = (-175) (VT5)
	$=-15=-15=\frac{\text{constant term}}{1}$
	Hence, relationship between the zeroes and the
	coefficient are verified.

VI)	$3x^2 - x - y$
	$= 3x^2 - 4x + 3x - 4$
	$= \chi(3\chi-4)+1(3\chi-4)$
	= (3x-4)(x+1)
	The value of 3x2-x-4 is zero
	3x-4=0 or $x+1=0$
	$x = \frac{4}{3} \text{ or } x = -1$
	Therefore zeroes of 3x2-x-4 are -1 and 4
	His
	Now sum of zeroes
	$=-1+\frac{4}{3}=\frac{-3+4}{3}=\frac{1}{3}$
	-(-1) -(coefficient of x)
	$= \frac{-(-1)}{3} - \frac{-(\text{coefficient of } x)}{\text{coefficient of } x^2}$
	Product of zeroes
	$= (-1) \left(\frac{4}{3}\right) = -\frac{4}{3} = \frac{\text{constant term}}{\text{coefficient of } x^2}$
	Hence, relationship between the zeroes and the
	coefficients are verified.

Q.2.	Find a quadratic polynomical each with the given numbers as the sum and product of its zeroes respectively.
	(i) $\frac{1}{4}$, -1 (ii) $\sqrt{2}$, $\frac{1}{3}$
	(11) 0, J5 (1v) 1,1
	$(v) - \frac{1}{4}, \frac{1}{4}$ (vi) 4, 1
Ans.	
(i)	$\frac{1}{4}$, -1
	let the quadratic polynomial be ax2+bx+c and its zeroes be k and B.
	Sum of zeroes = K+B = 1
	Sum of zeroes = $k+B = 1$ And $kB = $ broduct of zeroes = -1
	$ax^2+bx+c = k(x-k)(x-\beta)$
	Where k is any constant = $k \left[x^2 - (k+\beta)x + k\beta \right]$
- 1	$= k \left[\frac{\chi^2 - (k+\beta)\chi + k\beta}{2} \right]$
	$= k \left[x^2 - \frac{1}{5}x + (-1)\right]$
	$= k \left[x^2 - \frac{1}{4}x - 1 \right]$
	For different value of k, we get different quadratic polynomials.
T. (1)	

(ii)	$\sqrt{2}$, $\frac{1}{3}$
01/	let the quadratic polynomial be ax2+bx+c
	and its zeroes be k and B.
	Sum of zeroes = k+B = V2
	And product of zeroes = $k\beta = \frac{1}{3}$
	$ax^2+bx+c = k(x-k)(x-\beta)$
	Where k is any constant
	Where k is any constant = $k \left[x^2 - (k+\beta)x + k\beta \right]$
	$= k \left[x^2 - \sqrt{2}x + \frac{1}{3} \right]$
	3
and the	For different values of k, we get different
	quadratic polynomial.
-	
liii)	
	Let the quadratic polynomial be ax2+bx+c and
	Its zeroes be k and B.
	' Carro D Torras Lun - C
-	And product of zeroes = kp = 0
	$ax^2 + bx + c = k(x-k)(x-B)$
	dr forte = K(x k)(x b)
	Where k is any constant
	= k [x2-(k+B)x + kB]
	= K [x2-0x+J3]
	$= k (x^2 + \sqrt{5})$
	For different values of k, we get different
	quadratic polynomials.
	1 0